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Very recently, the electric dipole spin resonance �EDSR� of single electrons in quantum dots was discovered
by three independent experimental groups. Remarkably, these observations revealed three different mecha-
nisms of EDSR: coupling of electron spin to its momentum �spin-orbit�, to the operator of its position �inho-
mogeneous Zeeman coupling�, and to the hyperfine Overhauser field of nuclear spins. In this paper, I present
a unified microscopic theory of these resonances in quantum dots. A mean field theory, derived for all three
mechanisms and based on retaining only two-spin correlators, justifies applying macroscopic description of
nuclear polarization to the EDSR theory. In the framework of the mean field theory, a fundamental difference
in the time dependence of EDSR inherent of these mechanisms is revealed; it changes from the Rabi-type
oscillations to a nearly monotonic growth. The theory provides a regular procedure to account for the higher
nuclear-spin correlators that become of importance for a wider time span. For the hyperfine mechanism, they
change the asymptotic behavior of EDSR dramatically. The theory also allows evaluating the effect of electron-
spin dynamics on the effective coupling between nuclear spins.
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I. INTRODUCTION

One of the principal avenues of semiconductor spintronics
is based on the electrical manipulation of electron spins in
single and double quantum dots that are envisioned as pro-
spective blocks for quantum computation.1,2 There are two
major aspects of this problem. First is based in electrical
control of spin populations by means of the Coulomb and
Pauli blockade when electric current passing through the dot
populates or depopulates specific spin states.3,4 Second as-
pect is based on direct electrical operation of electron spin by
means of the electric dipole spin resonance �EDSR�.5,6 Re-
cently, it was achieved in quantum dots by three different
mechanisms.7–9

Nowack et al.7 observed Rabi oscillations driven by the
electric field generated by ac gate voltage and coupled to
electron spin via the traditional spin-orbit �SO� interaction.
Laird et al.8 reported hyperfine-mediated gate-driven EDSR
remarkable for a nearly monotonic increase in spin polariza-
tion rather than Rabi oscillations of it. The underlying
mechanism is spatial inhomogeneity of the Overhauser field
acting on electron spin. It is physically allied to the EDSR
mediated by a spatially dependent Zeeman Hamiltonian due
to the spatial dependence of either the external10–12 or
exchange10,13 magnetic field, or of the Landé g factor.14 The
SO mechanism may dominate in strong external magnetic
fields B but is suppressed in weak fields because the Kram-
ers’ theorem requires �in confined geometries� the Rabi fre-
quency to vanish linearly in B as B→0,15–18 while the hy-
perfine mechanism survives in the B→0 limit due to the
broken time-inversion symmetry and, therefore, dominates in
weak magnetic fields.19 More recently, Pioro-Ladrière et al.9

achieved EDSR in a double dot by employing a spatially
inhomogeneous �slanting� stray field of a micromagnet and
proved the high efficiency of this approach. The traditional
electron-spin resonance �ESR� driven by an ac magnetic field

has also been achieved in quantum dots;20 however, EDSR
promises higher efficiency and provides easier access to in-
dividual spins at nanoscale. Golovach et al.17 estimated rela-
tive intensities of ESR and SO-mediated EDSR in quantum
dots and concluded that electron spin can be operated at a
timescale of 10 ns.

The research described in this paper was inspired by the
observation of single-electron EDSR in GaAs quantum
dots.7–9 Electron-spin dynamics in such dots is a challenging
problem because of the hyperfine coupling of the electron
spin to nuclear-spin bath. As applied to spin relaxation in
quantum dots, a mean field theory approach advanced by
Merkulov et al.,21 Khaetskii et al.,22 and Erlingsson and
Nazarov23 proved rather successful. However, some impor-
tant aspects of electron-spin relaxation and dephasing cannot
be described in the framework of the mean field approach,
and dynamics of a single-electron spin in a nuclear-spin en-
vironment developed recently into a rather extensive field,
e.g., see papers24–29 and references therein.

This paper is aimed in calculating the electron-spin-flip
probability W�t� as a function of time t. For a simple two-
level system the celebrated Rabi formula states

WR�t� = f2sin2����/2�2 + f2t/��
��/2�2 + f2 , �1�

where � stands for the detuning and f for driving. It is highly
attractive to apply the mean field approach to EDSR, as it
allows replacing the nuclear reservoir coupled to the electron
spin by a classical field. Then one anticipates that � and f can
be expressed in terms of this field. Because experiments
measure the response to a long train of the electric field
pulses rather than to individual pulses,7–9 Eq. �1� should be
properly averaged over the nuclear magnetization that
changes substantially during the train.
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The main goals of the present paper are �i� deriving mean
field equations for three basic mechanisms of EDSR, �ii�
developing efficient techniques for simplifying mean field
integrals for spin-flip probability W�t� and finding their
asymptotic behavior at large t for various EDSR mecha-
nisms, �iii� developing a regular procedure for calculating
corrections to the mean field results and establishing the time
scale at which these corrections become essential and even
critical, and �iv� evaluating the effect of the forced preces-
sion of electron spin on the dynamics of nuclear bath. The
importance of these problems becomes more evident from
the following arguments.

First, as distinct from ferromagnets, where macroscopic
magnetization is stabilized by strong exchange interaction,
the direct interaction of nuclear spins in quantum dots is very
weak. Therefore, the description of nuclear polarization as a
macroscopic field acting on electron spin is based on �i� the
large number of nuclear spins inside the dot, N�1, typically
N�105–106, and �ii� their slow dynamics compared with
electron-spin dynamics. The probability WR�t� in Eq. �1� de-
pends on the parameters � and f in a complicated way, and
these parameters depend on all N of the nuclear spins I j.
Since the spin-flip probability should be averaged over all
the nuclear-spin configurations during the measurement, only
the averaged value of WR�t� is of physical significance, and
deriving the mean field expression for it is a challenging
problem. In particular, Gaussian averaging over the nuclear
variables implied by the Central Limit Theorem needs a con-
vincing proof because the accuracy of substituting the en-
semble of loosely coupled nuclear spins by a coherent force
acting on the electron spin is not obvious, especially as ap-
plied to the hyperfine EDSR mechanism.

Second, mean field theory is expressed in terms of two-
fold or threefold integrals, depending on the EDSR mecha-
nism. While numerical methods allow calculating W�t�
curves for specific parameters values, only analytical theory
can unveil the basic qualitative regularities typical of differ-
ent EDSR mechanisms. In particular, asymptotic behavior of
W�t� at large t is of special interest, and given the compli-
cated expressions for the integrands, finding asymptotics is a
demanding task, especially as applied to multiple integrals.
The hyperfine EDSR mechanism provides the most instruc-
tive example because of the different asymptotic behavior of
W�t� in various regions of the parameter values.

Third, because of the interplay between several competing
parameters, the accuracy of the mean field approach strongly
depends on the specific problem and the time span involved.
This makes developing a systematic procedure for going be-
yond the mean field theory and evaluating corrections to it a
high priority. While formally such corrections are of the or-
der of 1 /N, their effect might become rather essential at a
relatively short time t. For example, for the hyperfine mecha-
nism of EDSR, this time depends on N even weaker than
logarithmically, only as t��ln N.

Fourth, mean field theory is based essentially on the slow-
ness of nuclear-spin dynamics. It is controlled by both the
direct dipole-dipole interaction and indirect coupling involv-
ing the electron spin. The latter can dominate and is propor-
tional to 1 /�s, �s being the electron Larmor frequency;
hence, it is small only when �s is sufficiently large. How-

ever, under the conditions of EDSR the Zeeman term van-
ishes in the rotating frame,30,31 and 1 / ��s−�� diverges. This
observation indicates that indirect hyperfine-mediated cou-
pling between nuclear spins becomes time dependent and
poses the question whether it can experience resonant en-
hancement. Detailed analysis shows that indeed spin-spin
coupling is time dependent, but there is no considerable ac-
celeration of the nuclear-spin dynamics.

In what follows, I consider different driving forces �SO,
Zeeman, and hyperfine mediated�, and the hyperfine spin-
relaxation mechanism that usually dominates in quantum
dots, and derive mean field theory equations. It turns out that
in all three cases the mean field theory reduces to averaging
over the longitudinal and transverse fluctuations of nuclear
magnetization, in agreement with intuitive arguments. The
results provide a justification for previous theoretical work
performed in the framework of this approach. Mathemati-
cally, the derivation of mean field theory is based on relating
separate terms of the power series for the electron-spin-flip
probability W�t� to Eulerian � functions of integer or half-
integer arguments and employing their integral representa-
tions. The theory allows us to derive, in the framework of a
unified technique, time dependence of EDSR that is oscilla-
tory for the SO and Zeeman mechanisms, in good agreement
with the theory of Koppens et al.,32 and shows a nearly
monotonic increase for the hyperfine mechanism in accor-
dance with the conclusions by Laird et al.8 In the latter case,
W�t� approaches its saturation value W� very fast, like a
Gaussian exponent, according to the mean field theory, while
corrections to this theory show a slow power-law decay.

In this paper, the theory is developed as applied to a single
quantum dot; second dot can only serve for probing spin
dynamics. The model includes neither electric current across
the dot nor the coupling to thermal bath that can result in
electrical pumping of nuclear-spin polarization and the back
action of this magnetization on the electron spin.33,34 In elec-
trically pumped double dots this back action is known to
result in strong Overhauser fields and instabilities that were
observed in the Pauli blockade regime.8,20,35,36 For double
dots, there is recent progress in the controllable electrical
generation of nuclear-spin polarization37,38 and suppression
of electron-spin dephasing caused by random fluctuations.39

With a dynamically pumped nuclear-spin polarization essen-
tially exceeding the polarization from Poissonian fluctuations
employed in Ref. 8 �about 50 G�, one can expect dramatic
enhancement of the hyperfine-mediated EDSR. I expect that
the techniques developed in this paper can be extended to
those more general regimes.

The paper is organized as follows. In Sec. II, EDSR
Hamiltonians are derived for three mechanisms of the cou-
pling of electron spin to the driving electric field, and after-
wards transformed to a form convenient for calculating
EDSR probability W�t�. A general mean field expression for
W�t� is derived in Sec. III. In Sec. IV, the equation for W�t�
is simplified as applied to the SO and Zeeman �magnetic�
mechanisms of EDSR, and the asymptotic behavior of W�t�
is found. In Sec. V, the same program is performed for a
more challenging problem of hyperfine-mediated EDSR.
Sec. VI summarizes the basic approaches and results.
Nuclear-spin relaxation rate in a transient regime is calcu-
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lated in Appendix A, where absence of its resonance en-
hancement is shown. Appendix B includes estimates of the
corrections to mean field theory and proves that for the hy-
perfine EDSR mechanism they change the asymptotic behav-
ior of W�t� and become substantial at rather short times.

II. HAMILTONIAN AND ITS TRANSFORMATION

The Hamiltonian that is used in what follows is

H = H0 + Hel�t� + HZ + HSO�k,r� + Hhf�r� . �2�

Here H0 is the zero-order Hamiltonian

H0 =
�2k2

2m
+

m�0
2

2
r2 + V�y� , �3�

describing an electron moving in �x ,z� plane in a parabolic
quantum dot, r= �x ,z�, with the in-plane confinement fre-
quency �0, being rigidly confined in y direction by the po-
tential V�y�.40 Second term

Hel�t� = eẼ�t� · r, Ẽ�t� = 2Ẽ cos �t , �4�

describes the potential energy of the electron, with a charge

�−e�, in an in-plane driving electric field Ẽ�t�� ŷ. Third term

HZ = − �g�	B�B · s�, s = �/2, �5�

is the Zeeman energy for an electron with a negative g factor,
g
0, like in GaAs and InAs, and s=� /2 and � are the
electron-spin operator and vector of Pauli matrices, respec-
tively, with 	B=e� /2m0c being the Bohr magneton. With a
homogeneous field B in the confinement plane, B� ŷ, as in
Refs. 7 and 8, the diamagnetic contribution to the first term
in H0 can be disregarded, hence, k will be identified as a
canonical momentum.

Generalized SO Hamiltonian HSO�k ,r� consists of two
terms, HSO�k ,r�=HSO�k�+HSO�r�. Here HSO�k� is the usual
momentum-dependent SO interaction, and only the linear in
k terms will be considered in what follows. In the geometries

of Refs. 7 and 8, the field Ẽ�t� was applied along the face-
diagonal direction, in our notations along �1,0,1�. In the re-
lated coordinate frame, the Rashba and Dresselhaus contri-
butions to HSO can be written as HR=�R���k�y and HD

=�D�
xkz+
zkx�. With z axis chosen along Ẽ�t�, Ẽ= Ẽẑ, only
the kz component of the momentum k matters in HSO�k�.
Hence, HSO�k� reduces to a single term

HSO�k� = �
xkz, �6�

with �=�D−�R.41 Also, the homogeneous field B will be
chosen as B=Bẑ because this is the simplest geometry in
which HSO�k� of Eq. �6� mediates spin flips.

The term HSO�r� describes SO interaction originating
from the inhomogeneity of magnetic field, the mechanism
employed in Ref. 9. With the polarization of the driving field

Ẽ= Ẽẑ, only the z dependence of HSO�r� matters, and to sim-
plify calculations, HSO�r� will be chosen linear in z. Keeping
only the y component of the stray field,9 one arrives at

HSO�r� = �
yz , �7�

where � is a slanting coefficient.

The standard expression for the hyperfine Hamiltonian is

Hhf�r� = A�
j

��r − r j��I j · s�, A =
16�

3I
�	B	n, �8�

where summation is performed over all lattice sites j, I j are
operators of nuclear momenta, I=3 /2 for GaAs, 	n are mag-
netic moments of nuclei �difference in 	n values for different
nuclei is disregarded�, and � is the enhancement factor. For
GaAs, a rough estimate An0�10−4 eV can be used, with
n0=4.5�1022 cm−3 for the concentration of nuclei.42

A. Transformation into the moving-dot frame

In what follows, HSO�k ,r� and Hhf�r� will be considered
as small compared with ��0. However, before applying per-
turbation theory, it is convenient to eliminate the zero mode
inherent in the problem of a parabolic dot in a homogeneous

field Ẽ�t�. This mode manifests itself in keeping the shape of
the electron cloud unchanged when it is displaced by an
external homogeneous and time-independent electric field.43

This can be conveniently achieved by performing a time-
dependent canonical transformation of the Schrödinger equa-
tion i��t�=H� as

��r,y,t� → e−ik·R�t���r,y,t�, R�t� = − eẼ�t�/m�0
2; �9�

it describes changing to a coordinate frame moving with the
dot. This choice of R�t� allows eliminating the driving term
Hel�t� and the zero mode. The transformation of Eq. �9� also

produces a term −e2Ẽ2�t� /2m�0
2 that has no physical signifi-

cance and can be eliminated by an additional canonical trans-
formation. However, two different results of the transforma-
tion to the moving-dot frame have important consequences.

First, instead of the term Hel�t� a new term H̃el�t� appears
in the Hamiltonian

H̃el�t� = − 2
e��

m�0
2 �k · Ẽ�sin �t . �10�

This term, in conjunction with HSO�k�, drives the SO-
mediated EDSR. A factor � /�0�1 in Eq. �10� emphasizes a
critical role of nonadiabaticity for this type of SO coupling
and relates the EDSR intensity to it. If the spin resonance
frequency �s= �g�	BB /� is small compared with �0, as is
typical of GaAs, then � /�0��s /�0�1. This is the special
form in which the EDSR suppression due to the Kramers
theorem15–18 manifests itself as applied to parabolic quantum
dots.

Second, the canonical transformation of Eq. �9� changes
the operator r as

r → eik·R�t�re−ik·R�t� = r + R�t� . �11�

This time-dependent shift of r by R�t� transforms the
r-dependent operators HSO�r� and Hhf�r� as HSO�r�
→HSO�r+R�t�� and Hhf�r�→Hhf�r+R�t��. As applied to
HSO�r� of Eq. �7�, the time-independent term �
yz produces

EDSR only in conjunction with H̃el�t�; hence, this contribu-
tion is suppressed by the nonadiabaticity factor � /�0 and
will be omitted. The dominant term in the transformed
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HSO�r� comes from the z component of R�t� and equals

Hm�t� = �
yZ�t� . �12�

It is not subject to the Kramers suppression because of the
breaking time-inversion symmetry.

B. Projecting onto the ground state

At this moment, it is convenient to project the moving
frame Hamiltonian onto the oscillator-type ground state of
the zero-order Hamiltonian H0. Two terms in the total

Hamiltonian H, HSO�k� and H̃el�t�, are nondiagonal in oscil-
lator quantum numbers. Projecting them onto the oscillator
ground state requires performing a standard
�Luttinger-Kohn-44 or Schrieffer-Wolff-45 type� canonical
transformation44

�H0 + H1� → eT�H0 + H1�e−T �13�

with H1=HSO�k�+ H̃el�t�. Choosing T from the condition of
canceling the linear in H1 term, H1+ �T ,H0�=0, the Hamil-
tonian reduces to �H0+H1�→H0− �T , �T ,H0�� /2 in the qua-
dratic in T approximation. Solving the equation for T results
in 	0�T�1
=−	0�H1�1
 /��0, where �0
 and �1
 are standing for
the oscillator ground and first excited state, respectively.
Then, using Eqs. �6� and �10� and keeping in the second-
order correction only the term oscillating at frequency �, one
arrives at a Hamiltonian H0+HSO�t� with

HSO�t� = 2
�eẼ

��0

�

�0

x sin �t = 2

eẼr0
2

�SO

�

�0

x sin �t . �14�

This operator describes the joint effect of HSO�k� and H̃el�t�.
In the projected Hamiltonian H0=��0 /2, this constant hav-
ing no effect on spin dynamics will be omitted. When deriv-
ing Eq. �14�, the expression �	0�kz�1
�2=m�0 /2� for the ma-
trix element of the momentum was used. In this equation
r0=�� /m�0 is the electron ground-state radius, and �SO
=�2 /m� is a characteristic SO length. Equation �14� holds

when �� ,eẼr0�� /�0����0, with ��=m�2 /�2 for the char-
acteristic SO energy.

Averaging Hhf�r+R�t�� over the ground state �0�r ,y� of
the dot, expanding the average in R�t� and keeping two lead-
ing terms of the expansion, results in two hyperfine contri-
butions to the Hamiltonian

Hhf
0 = A�

j

�0
2�r j,yj��I j · s� ,

Hhf�t� = A�
j

�R�t� · �rj
��0

2�r j,yj��I j · s�; �15�

here and below �0�r ,y� is chosen real. The criterion of this

expansion, Z�t��r0, is equivalent to eẼr0���0.
The term Hhf

0 is time independent and describes the hyper-
fine corrections to the electron Zeeman splitting in the field
B=Bẑ and the electron-mediated coupling between nuclear
spins. It will be discussed in Sec. II C in more detail.

The term Hhf�t� oscillates at the frequency � and results in
hyperfine-mediated EDSR. Below, only step-up and step-

down spin operators responsible for these transitions will be
retained in Hhf�t�; hence, it reduces to the form

Hhf
��t� =

A

4 �
j

Z�t� · �zj
��0

2�r j,yj���Ij
+
− + Ij

−
+� , �16�

where 
�=
x� i
y, and Ij
�= Ij

x� iIj
y.

Finally, the Hamiltonian in the quantum dot reference
frame reads

H = �HZ + Hhf
0 � + �HSO�t� + Hm�t� + Hhf

��t�� . �17�

Three terms in second bracket represent three EDSR mecha-
nisms discussed above. In deriving this Hamiltonian, only
linear in R�t� terms were retained. Terms of the higher order
in R�t�, as well as higher harmonics in Eq. �14� and some
different terms, require a theory including parametric
excitations.46

C. Spin-spin coupling operator

In this paper, electron-spin coupling to the nuclear-spin
bath and the spectral diffusion caused by this coupling are
considered as the only source of electron-spin decoherence
because of the general scope of the paper focused on the
hyperfine coupling and especially on the interplay between
its contributions to different terms of the perturbation theory.
This decoherence mechanism was recently discussed in the
context of free spin induction decay and Hahn echo by Wit-
zel and Das Sarma25 and Yao et al.;26 see also references in
these papers to extensive literature on the subject. Electron-
spin decoherence originates from the spin dynamics in the
nuclear bath caused by both the intrinsic mechanisms �like
dipole-dipole interaction� and the extrinsic mechanism medi-
ated by the hyperfine coupling of nuclear spins to the elec-
tron spin through the operator Hhf

0 of Eq. �15�. In what fol-
lows, only the latter mechanism will be considered because it
facilitates effective nuclear-spin-spin coupling at the large
spatial scale of r0.

The term Hhf
0 =Hhf

� +Hhf
� includes two contributions. The

longitudinal �secular� part Hhf
� is proportional to sz and de-

scribes random fluctuations of the electron Zeeman energy
because of the Overhauser field. The transverse part Hhf

�,
while depending on s�, cannot produce real electron-spin-
flip transitions because of the large electron Zeeman energy
��s= �g�	BB �nuclear Zeeman energy is small and will be
omitted�. However, in the second order of the perturbation
theory in �s

−1, the operator Hhf
� results in nuclear-spin non-

conservation and spectral diffusion of the Overhauser field.
Everywhere below, nuclear spins I j will be considered as
classical variables, i.e., their commutators will be disre-
garded. This simplifies calculations and should not affect ba-
sic results because I j and I j� commute for j� j�, and correla-
tors involving more than two-spin operators at the same
lattice site are statistically insignificant in the mean field
theory developed below �Appendix B is the only exclusion�.

Applying the procedure of Eq. �13� to the operator HZ

+Hhf
�, one finds T=� jaj�Ij

+
−− Ij
−
+� /�8��s, with

EMMANUEL I. RASHBA PHYSICAL REVIEW B 78, 195302 �2008�

195302-4



aj =
A

�2��s

�0
2�r j,yj� , �18�

and the transformed operator Hhf
� becomes an operator of the

effective nuclear-spin-spin coupling

Hss = −
1

2 �
n�m

anamIn
+Im

− 
z. �19�

It interchanges the projections of nuclear spins at different
lattice sites while keeping electron spin unchanged. This ex-
pression for spin-spin coupling recovers the result by Yao
et al.26 Because the diagonal term, n=m, is statistically in-
significant for large dots, the n�m constraint can be omitted.
Then

Hss = −
1

2
g+g−
z, g� = �

j

ajIj
�. �20�

In similar notations

Hhf
� = gz
z, gz = ���s/2�

j

ajIj
z. �21�

We notice that gz and g� have different dimensions.
Substituting Eqs. �20� and �21� into Eq. �17�, one arrives

at the final form of the Hamiltonian in the dot frame

H = �HZ + Hhf
� + Hss� + �HSO�t� + Hm�t� + Hhf

��t�� . �22�

Three terms in the first bracket describe the electron Zeeman
energy, its random shift due to the longitudinal component of
the Overhauser field, and coupling between nuclear spins,
respectively. Second bracket describes the driving force act-
ing on the electron spin. It consists of the spin-orbit, inho-
mogeneous magnetic field, and hyperfine contributions.

In conclusion of this section, one comment regarding the
spin-spin Hamiltonian Hss of Eq. �19� should be made. It was
derived by transforming the static Hamiltonian HZ+Hhf

�, and
the products anam in Hss are proportional to 1 /�s, with �s
playing a role of a large parameter �spin gap� in the energy
spectrum. However, in the EDSR regime the situation
changes drastically because in the rotating frame Hamil-
tonian the large frequency �s is reduced to ��s−�� �see Eq.
�25� below�. Therefore, a question arises whether Hss can
experience a resonant enhancement at �→�s because of the
“rotating frame singularity.” This problem is considered in
Appendix A, where it is shown that Hss changes and be-
comes time dependent at the scale of the Rabi frequency but
does not experience any resonant enhancement. Because
solving electron-spin dynamics with a time-dependent Hss�t�
is an extremely challenging �or even impossible� task, in
what follows the Hamiltonian Hss of Eq. �20� is used as a
model Hamiltonian. The magnitude of the coefficients aj can
be subject to renormalization, but their j dependence will be
chosen according to Eq. �18�.

D. Rotating frame Hamiltonian

All terms in second bracket of Eq. �22� depend on time
harmonically, HSO�t� as sin �t while Hm�t� and Hhf

��t� as
cos �t. Applying the standard transformation to the rotating
frame30,31

��r,y,t� = exp�i
z�t/2��RF�r,y,t� , �23�

which transforms Pauli matrices as


��t� = 
� exp��i�t�, 
z�t� = 
z, �24�

results in the rotating frame Hamiltonian

Ĥ = �1

2
�s + gz −

1

2
g+g−

z +

1

2
�f−
+ + f+
−� . �25�

When deriving Eq. �25�, the rotating wave approximation
was applied with all fast-oscillating terms omitted. Here �s
=���−�s� is detuning, gz is the Overhauser shift, and
g+g− /2 describes second-order coupling to the spin bath.

Using Eqs. �12�, �14�, and �16�, one finds driving terms f�

for different mechanisms of EDSR

f�
SO = � i�eẼr0

2/�SO���/�0� , �26�

f�
m = � i��eẼ/m�0

2� , �27�

f�
hf = �

j

bjIj
�, bj = −

AeẼ

2m�0
2�zj

��0
2�r j,yj�� . �28�

It is seen from Eqs. �26�–�28� that for two first mechanisms
the expressions for f� are very similar, hence, a unified
theory of EDSR will be developed for them �see Sec. IV�. As
distinct from them, presence of spin angular momenta Ij

� in
the coefficients f�

hf for the hyperfine-mediated EDSR changes
the situation drastically. This mechanism requires a special
consideration, and a theory for this type of EDSR is de-
scribed in Sec. V.

Equation �25� for the Hamiltonian Ĥ, Eqs. �20� and �21�
for �gz ,g��, and Eqs. �26�–�28� for f� form the basic system
of equations. In what follows, they will be solved and spin-
flip probabilities will be averaged over nuclear-spin configu-
rations for calculating time dependence of EDSR.

III. SPIN-FLIP PROBABILITY

With the external magnetic field B strong enough, the ini-
tial electron-spin state can be chosen as �↑ 
, and electron
wave function in the rotating frame evolves as �RF�t�
=exp�−iĤt /����0↑
. Then, applying Eq. �23� results in the
spin-flip matrix element

	↓�0�exp�i
z�t/2�exp�− iĤt/����0↑


and spin-flip probability

W�t� = �	↓�0�exp�− iĤt/����0↑
�2 �29�

because the factor exp�i
z�t /2� cancels out. The square of

the Hamiltonian Ĥ of Eq. �25�

Ĥ2 � H2 = ��s

2
+ gz −

1

2
g+g−
2

+ f+f− �30�

does not depend on Pauli matrices. Hence, the exponential
factor in Eq. �29� can be simplified as
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exp�− iĤt/�� = cos�Ht/�� − i�Ĥ/H�sin�Ht/�� . �31�

Finally, the transition probability equals

W�t� = �	�0�
f+f−

H2 sin2�Ht/����0
�2

. �32�

This is the celebrated Rabi formula with f+f− for the driving
term and ��s+2gz� for detuning.48 The special feature of Eq.
�32� is the presence of the dephasing term −g+g− /2 originat-
ing from the transverse part of the random nuclear magneti-
zation.

Spin oscillations described by W�t� are controlled by the
competition between the quantities �s, gz, g+g−, and f+f−, all
of them being small compared with the Zeeman energy HZ
that does not appear in Eq. �32� explicitly. Corrections to the
initial state �0�↑ 
 due to the nuclear-spin fluctuations should
merely renormalize the basic parameters, in inverse powers
of HZ, similarly to the Bloch-Siegert corrections to the rotat-
ing wave approximation,49 without changing the main pat-
tern of oscillations. Hence, they will be disregarded in what
follows.

A. Averaging over nuclear angular momenta

The probability W�t� depends on the nuclear-spin polar-
ization through gz and g� of Eqs. �20� and �21� and f�

hf of Eq.
�28�. Because experimental data are typically taken by aver-
aging over dozens of thousand pulses covering time spans
exceeding the nuclear-spin diffusion time,7–9 average values
of W�t� of Eq. �32� over all nuclear-spin configurations are of
the principal interest. Calculating these average values is
highly facilitated by the fact that the series for the ratio

sin�Ht/��
H

=
t

�
�
k=0

�

�− �k
�Ht/��2k

�2k + 1�!
�33�

includes only even powers of H. Therefore, each term of the
power series for the averaged probability W�t�

W�t� = �
k,k�=0

�
�− �k+k��t/��2�k+k�+1�

�2k + 1� ! �2k� + 1�!

�� f+f−���s

2
+ gz −

1

2
g+g−
2

+ f+f−�k+k��
0,nuc

�34�

is a polynomial in the nuclear angular momenta I j. The sub-
script �0,nuc� indicates that both quantum averaging over �0
and statistical averaging over nuclear momenta should be
performed. Due to the weak interaction between nuclear mo-
menta, only single-site correlators can be retained. Next sim-
plification originates from the fact that for large quantum
dots, containing about 105–106 nuclear spins, pair correla-
tors statistically dominate; the contribution from higher cor-
relators is estimated in Appendix B. Finally, of all pair corr-
elators only 	Ij

zIj
z
= I�I+1� /3 and 	Ij

+Ij
−
=2I�I+1� /3 do not

vanish. This allows to separate the averaging over gz from
the averaging over g� and f�.

B. Averaging over longitudinal magnetization

From Eqs. �18� and �21� follow an expression for gz
2 av-

eraged over nuclear-spin configurations

	gz
2
 =

1

12
A2n0I�I + 1�� � drdy�0

4�r,y� . �35�

With oscillator ground-state functions �0�x�=exp�−x2 /
2r0

2� /��1/2r0 and �0�z� in x and z directions, and hard wall
confinement ��y�=�2 /d cos��y /d� in y direction, �0�r ,y�
=�0�x���y��0�z� and

	gz
2
 = �2/2,� = �A2n0I�I + 1�/8�r0

2d . �36�

By combinatorial arguments based on the multiplicity of pos-
sible pairings, expressing 	gz

2M
 in terms of pair correlators
results in

	gz
2M
 = �2M − 1� ! ! 	gz

2
M , �37�

with �2M −1� ! ! =1 for M =0. Then, from the relation be-
tween �2M −1� ! ! and the Eulerian Gamma function

�2M − 1� ! ! = 2M��M + 1/2�/�� , �38�

and from the integral representation of ��M +1 /2�

��M +
1

2

 = �

−�

�

dtt2Me−t2 �39�

valid for integer values of M, a Gaussian distribution for gz
follows

	gz
2M
 = �

−�

�

dww2M���w� ,

���w� =
1

���
exp�− w2/�2� , �40�

with a standard deviation 	gz
2
=�2 /2.

Therefore, averaging Eq. �34� over the longitudinal mag-
netization gz can be performed as a Gaussian integration with
the distribution function ���w� of Eq. �40�.

C. Averaging over transverse magnetization

Averaging Eq. �34� over Ij
� is more involved because

these operators appear both in g� and f�. Applying Eqs. �18�
and �20� results in an expression similar to Eq. �35�, and
finally results in

	g+g−
 =
A2n0I�I + 1�
4���sr0

2d
. �41�

Average values of �g+g−�M, in the pair-correlator approxima-
tion, calculated from combinatorial arguments, are

	�g+g−�M
 = M ! 	g+g−
M � M ! �2M . �42�

From the integral representation
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M ! = ��M + 1� = �
0

�

dttMe−t, �43�

by changing the variable t=u2 /�2, one arrives at a Gaussian
distribution

	�g+g−�M
 =� d2uu2M���u� ,

���u� =
1

��2exp�− u2/�2� . �44�

Not surprisingly, the distribution is two dimensional. This
reflects the two-dimensional nature of the transverse spin po-
larization Ij

�. Constants � and � are connected by a simple
relation

� = ���s/2� . �45�

Condition of sharp spin resonance, ����s, is tantamount to

�2/2� � 1. �46�

This condition of weak hyperfine-mediated spin-spin cou-
pling will be used below.

Next step is averaging Eq. �34� over f�
hf. It follows from

Eq. �28� that

	f+
hff−

hf
 =
2

3
n0I�I + 1�� AeẼ

2m�0
2
2� � drdy��z��0

2�r,y���2,

�47�

and after performing all integrations

	f+
hff−

hf
 =
n0I�I + 1�

8�d
�AeẼ

��0

2

� �2. �48�

The same combinatorial arguments that led to Eqs. �42�–�44�
result in a two-dimensional Gaussian distribution

	�f+
hff−

hf�M
 =� d2vv2M���v� ,

���v� =
1

��2exp�− v2/�2� . �49�

The last sort of pair products appearing in Eq. �34� are
cross products g+f−

hf and g−f+
hf. According to Eqs. �18�, �20�,

and �28�

	g+f−
hf
 �� � drdy�z��0

4�r,y�� = 0, �50�

hence, cross products vanish after the integration. Vanishing
the cross products allows separating the averaging over the
products g+g− from averaging over f+

hff−
hf. Potentially, cross

products describe the effect of driving force on spin dynam-
ics of the nuclear bath, but in the approximation accepted
their average values vanish.

D. Mean field equation

It was shown in Secs. III B and III C that averaging over
nuclear spins reduces to three integrations over the distribu-
tions ���w�, ���u�, and ���v�. For these integrations, the
variables in Eq. �34� should be substituted as

gz → w, g+g− → u2, f+f− → v2.

Afterwards, both summations over k and k� in Eq. �34� can
be performed, and one recovers the Rabi formula of Eq. �1�
in which parameters � and f are expressed in terms of aux-
iliary variables u, v, and w, over which integration should be
performed. Finally

W�t� = �
−�

�

dw���w�� d2v���v�� d2u���u�

� v2
sin2����s

2 + w − 1
2u2�2

+ v2 t
��

��s

2 + w − 1
2u2�2

+ v2
, �51�

with ���w�, ���u�, and ���v� defined by Eqs. �40�, �44�, and
�49�, respectively. Equation �51� generalizes the equation ap-
plied in Ref. 8 to hyperfine-mediated EDSR by including
nuclear-spin dynamics described by the term u2 /2 and the
corresponding integration.

The above derivation proves that as applied to EDSR the
pair-correlator approximation is tantamount to a mean field
theory described by Eq. �51�. It was derived for the
hyperfine-mediated EDSR. For the spin-orbit or magnetically
mediated EDSR the integration over v should be omitted and
v2 should be substituted by f+

SOf−
SO or f+

mf−
m, respectively. Cor-

rections to the mean field theory are estimated in Appendix
B, where it is shown that they can acquire importance at a
modest time span.

IV. SPIN-ORBIT AND MAGNETICALLY MEDIATED EDSR

In this case Eq. �51� simplifies and includes integration
two variables, u and w, with v2 substituted as v2→ f2= f+f−
with f+

SOf−
SO or f+

mf−
m of Eqs. �26� and �27� for the EDSR

mediated by the spin-orbit or inhomogeneous magnetic-field
mechanisms, respectively. The results are also applicable to
the usual spin resonance driven by an ac magnetic field. It is
convenient, by using the relation sin2 �= �1−cos 2�� /2, to
split W�t� onto its asymptotic value W� at t→� and the
time-dependent part W1�t� as

W�t� = W� − W1�t� , �52�

and introduce dimensionless variables

� = w/f , � = u2/2f , � = ft/� , �53�

and parameters

� = �s/2f , R = f/�, R1 = 2f/�2. �54�

Then

W� =
RR1

2��
�

−�

�

d��
0

�

d�
exp�− R2�2 − R1��

�� + � − ��2 + 1
, �55�

and
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W1��� =
RR1

2��
�

−�

�

d�e−R2�2�
0

�

d�e−R1�

�
cos�2��� + � − ��2 + 1��

�� + � − ��2 + 1
. �56�

W� can be calculated in the limit of weak driving force,
R�1, due to the criterion of Eq. �46�; this regime is typical
of most experiments. Indeed, the integrand includes a narrow
Lorentzian � function ���+�−����−1 / ���+�−��2+1� that
allows performing integration over � for R�1. Afterwards,
integration over � can be easily performed because the
Gaussian exponent is nearly a constant due to the fact that
2R2� /R1= ��s /����2 /2���1 for any �s /��1 due to Eq.
�46�. Finally,

W� �
f

2���
exp�−

�s
2

4�2
 . �57�

When Eq. �46� is satisfied, W� does not depend on �. Gen-
eral expression for W� can be found from Eqs. �64�–�66� by
omitting factors cos�2s�� in integrands.

A. Simplifying the expression for W1(�)

To simplify integral �56�, it is convenient to introduce
instead of � a new variable

s2 = �� + � − ��2 + 1, s  0, �58�

which allows expressing W1��� in terms of a Fourier trans-
formation. Afterwards, integration over � in Eq. �56� can be
cut into parts in such a way that, after simple transformations
like changing signs of variables, the integrations are per-
formed over positive values of both variables. Finally, one
arrives at

W1��� = W1
�1���� + W1

�2���� + W1
�3���� �59�

with

W1
�1���� =

RR1

2��
�

0

�

d� exp�− R2�� + ��2 + R1��

����2+1

�

ds
exp�− R1

�s2 − 1�

s�s2 − 1
cos�2s�� , �60�

W1
�2���� =

RR1

2��
�

0

�

d� exp�− R2�� − ��2 − R1��

��
1

��2+1
ds

exp�R1
�s2 − 1�

s�s2 − 1
cos�2s�� , �61�

W1
�3���� =

RR1

2��
�

0

�

d� exp�− R2�� − ��2 − R1��

��
1

�

ds
exp�− R1

�s2 − 1�

s�s2 − 1
cos�2s�� . �62�

After introducing two auxiliary functions

G���� = �
�

�

du exp�− R2�u � ��2 � R1u� , �63�

G����=0, Eqs. �60� and �61� can be performed by parts.
This transformation reduces repeated integrals to onefold in-
tegrals because � enters into internal integrals only through
their limits. Finally

W1
�1���� =

RR1

2��
�

1

�

ds
G+��s2 − 1� − G+�0�

s�s2 − 1

� exp�− R1
�s2 − 1�cos�2s�� , �64�

W1
�2���� = −

RR1

2��
�

1

�

ds
G−��s2 − 1�

s�s2 − 1
eR1

�s2−1 cos�2s�� ,

�65�

W1
�3���� = −

RR1

2��
�

1

�

ds
G−�0�

s�s2 − 1
e−R1

�s2−1 cos�2s�� . �66�

Because G���� can be expressed in terms of the Erfc func-
tion, Erfc�z�= �2 /����z

�exp�−t2�dt, integrals �63�–�66� can
be easily calculated for any given set of parameter values.
However, a wider insight comes from calculating their
asymptotic behavior at large �.

B. Large-� behavior of W1(�)

Large-� behavior of W1��� is controlled by the singulari-
ties of the integrands of Fourier integrals �63�–�66�. All in-
tegrands decay exponentially at s→�, and square-root be-
havior at s=1 is their only singularity. Because the
numerator of the integrand of W1

�1���� vanishes at s=1, the
singularity is softened. Therefore, the large-� behavior is
controlled by W1

�2���� and W1
�3���� due to �s2−1 in the de-

nominators. For calculating the leading terms of the expan-
sions, all other factors in the integrands can be taken at their
s=1 values, as G−��s2−1�→G−�0�, exp��R1

�s2−1�→1,
and s�s2−1→�2�s−1. The remaining integral reduces to
Fresnel integrals and can be calculated exactly,

�
1

� ds
�s − 1

cos�2s�� =� �

2�
cos�2� +

�

4

 . �67�

The coefficient G−�0� equals

G−�0� = −
��

2R
exp� R1

2

4R2 − R1�
Erfc� R1

2R
− R�


� R1
−1 exp�− �s

2/4�2�; �68�

the second part of Eq. �68� follows from Eq. �46�. Remark-
ably, while the exact equation is asymmetric in �, the ap-
proximate expression is symmetric in the detuning �s. Fi-
nally, for t→�

W1�t� �
1

2�
��f

t
exp�−

�s
2

4�2
cos�2f

�
t +

�

4

 . �69�

Equation �69� was derived in a strict t→� limit. Because
of the existence in the problem of a large parameter R1
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�1,R ,R−1, one cannot exclude the existence of some inter-
mediate asymptotic valid for � up to some upper bound re-
lated to this parameter. To check this possibility, one must
first take the limit R1→� in Eq. �56�. Then

W1��� =
R
��
�

1

� ds

s�s2 − 1
cosh�2R2��s2 − 1�

� exp�− R2�s2 − 1 + �2��cos�2s�� . �70�

Applying an approach similar to that leading to Eq. �67�, one
arrives at Eq. �69�. Therefore, it holds in the whole region
1��
�. This type of universal oscillatory behavior with
1 /�t decay was first found in the R1→� limit, experimen-
tally and theoretically, by Koppens et al.32

V. HYPERFINE-MEDIATED EDSR

To evaluate the threefold integral of Eq. �51�, it is conve-
nient to split it into two terms similarly to Eq. �52� and define
dimensionless variables

� = w/�, � = v/�, � = u2/2�, � = �t/� �71�

and parameters

R = �/�, R1 = 2�/�2, � = �s/2� . �72�

Then

W� =
RR1

�
�

−�

�

d�e−R2�2�
0

�

d�e−R1�

� �
0

�

d��3 exp�− �2�
�� + � − ��2 + �2 , �73�

and this integral can be evaluated in the R�1 limit by per-
forming integration over �. Using Eq. �46� one arrives at

W� � ���/4��exp�− �s
2/4�2� �74�

that is similar to Eq. �57�. More general expression for W�

can be found from Eq. �82� by omitting cos�2��� in the in-
tegrand.

Evaluating W1��� is the major challenge, and rewriting it
as a sum of three integrals similar to Eq. �59� �each one
including integrations only over positive values of all argu-
ments� is the first step. Transformations are similar to the
applied when deriving Eqs. �60�–�62�, but for the reasons
that will become clear in what follows it is convenient to
choose a different parametrization. In terms of a variable
�2= ��+�−��2, �!0, chosen instead of �, Eq. �51� reads

W1��� =
RR1

��
�

0

�

d��3e−�2�
0

�

d�e−R2�� + ��2+R1��
�

�

d�e−R1�cos�2��2 + �2��
�2 + �2

+
RR1

��
�

0

�

d��3e−�2�
0

�

d�e−R2�� − ��2−R1��
0

�

d�eR1�cos�2��2 + �2��
�2 + �2

+
RR1

��
�

0

�

d��3e−�2�
0

�

d�e−R2�� − ��2−R1��
0

�

d�e−R1�cos�2��2 + �2��
�2 + �2 . �75�

Introducing functions G���� of Eq. �63� and performing in-
tegrations over � by parts allows eliminating integrations
over �. The procedure is similar to deriving Eqs. �64�–�66�.
Finally

W1��� =
RR1

��
�

0

�

d��3e−�2

� �
0

� d�

�2 + �2F���cos�2��2 + �2�� , �76�

with

F��� = G̃+���e−R1� − �G−���eR1� + G−�0�e−R1�� . �77�

Functions G̃���� are defined as complementary to G����

G̃���� = �
0

�

du exp�− R2�u � ��2 � R1u� �78�

and obey a relation

G̃��− �� = − G̃���� . �79�

Equation �76� is the final expression for the time-dependent
part of the transition probability.

A. Large-� asymptotic of W1(�)

Equation �76� demonstrates the convenience of the pa-
rametrization employed in Eq. �75�. Indeed, square root in
the argument of cos�2��2+�2�� can be conveniently elimi-
nated by transforming to polar coordinates as �=� cos �, �
=� sin �. Then Eq. �76� reads

THEORY OF ELECTRIC DIPOLE SPIN RESONANCE IN… PHYSICAL REVIEW B 78, 195302 �2008�

195302-9



W1��� =
RR1

��
�

0

�/2

d� sin3 �

� �
0

�

d��2e−�2 sin2 �F�� cos ��cos�2��� . �80�

The internal integral in Eq. �80� is a Fourier transforma-
tion, and its asymptotic behavior at large � is controlled by
the singularities of the integrand. It is analytical for 0"�

�. When both R ,R1�0, F��� decays exponentially with �,
hence, F�� cos �� shows exponential decay for ��� /2. The
factor exp�−�2 sin2 �� decays exponentially for ��0.
Therefore, the whole integrand decays exponentially for ar-
bitrary value of �. To find out the behavior of F��� near �
=0, it is convenient to transform Eq. �77� to an equivalent
but a more symmetric form

F��� = �G̃+���e−R1� − G̃−���eR1�� − 2G−�0�cosh�R1�� .

�81�

It is seen from the comparison of Eqs. �79� and �81� that F���
is an even function of �, F�−��=F���, and because it is ana-
lytical at �=0, all its odd derivatives vanish at �=0. This
observation allows extending the integration over � to the
whole real axis, −�
�
�, and suggests that the integral
vanishes faster than any finite power of �. Because this state-
ment is valid for arbitrary �, it is valid also for the integral
over �. Therefore, the decay of W1��� is of the exponential
type, and this is apparently the most general statement that
can be made. As distinct from Sec. IV B, I see no way for
finding the �→� behavior before performing expansion in
inverse R1.

Expanding F��� in R1
−1 provides a more specific outlook

onto the asymptotic behavior of W1��� of Eq. �80�. Because
equations are rather bulky, results will be first provided for
the resonance regime, �=0. The leading term of the expan-
sion of F��� is F�� cos ����2 /R1�exp�−R2�2 cos2 ��, and
by substituting it into Eq. �80� one arrives at

W1��� =
R
��
�

0

�/2

d� sin3 ��
−�

�

d��2

� exp�− �2�sin2 � + R2 cos2 ���cos�2��� .

�82�

The Gaussian integral over � can be performed exactly, but
the result is rather cumbersome. It simplifies essentially
when terms of the order of 1 are disregarded compared with
the term �2�1. Afterwards, the integration over � can be
simplified by choosing a proper parametrization. Remark-
ably, for R=1 the integrations over � and � separate, and
W1��� shows a somewhat special behavior as will be seen
from some examples in what follows.

For R
1, by choosing

u = 1/�1 − �1 − R2�cos2 �� �83�

as a new variable, one finds

W1��� � −
R�2

2�1 − R2�3/2�
1

1/R2

du
1 − R2u
�u − 1

e−u�2
. �84�

Because exp�−u�2�, in the asymptotic region of large �, de-
creases very fast with u, the main contribution to the integral
comes from the close vicinity of the lower integration limit,
u=1. However, the integrand in Eq. �84� either diverges in
this point, for R�1, or vanishes, for R=1. As a result, the
asymptotic behavior of the integral is strongly influenced by
the competition between � and �R−1�. For �2�1−R��1

W1��� � −
R��

2�1 − R2
�e−�2

. �85�

In the experiments by Laird et al.,8 the coefficient R was
small, R�10−2. Nevertheless, it is instructive to consider a
wider region of R values. Equation �85� is valid for
�2�1−R��1, but in the close vicinity of R=1, for 1��2

� �1−R�−1, an intermediate asymptotic holds

W1��� � −
2

3
�2e−�2

. �86�

For R!1, the following equation holds instead of Eq. �84�:

W1��� � −
R�2

2�R2 − 1�3/2�
1/R2

1

du
R2u − 1
�1 − u

e−u�2
, �87�

and integration near the lower limit, for �2�R−1��1, results
in

W1��� � −
R2

2�R2 − 1�
e−�2/R2

. �88�

Despite the difference in the specific form of the
asymptotic expressions of Eqs. �86�–�88�, they have three
major features in common. First, in all cases the decay is of
exponential type, close to Gaussian, in agreement with our
general conclusion. Second, as distinct from the Rabi oscil-
lations typical of spin-orbit and magnetically mediated
EDSR �see Sec. IV�,7,9 smooth time dependence is the dis-
tinctive feature of hyperfine-mediated EDSR.8 Rabi oscilla-
tions are washed out by averaging over the fluctuations of
the transverse nuclear magnetization. Third, in all cases
W1��� is negative. This suggests that the probability W�t� of
Eq. �52� approaches its limit value, at t→�, from above, in
agreement with a weak overshoot found numerically by
Laird et al.8

Corrections to Eq. �82� from the higher order terms of the

expansions of G���� and G̃���� in 1 /R1 contain the same
Gaussian exponent exp�−R2�2 cos2 ��. Their pre-exponential
factors are small in �R /R1�2= ��2 /2��2 and �R2� /R1�2 what
is actually the same because R��1 due to the Gaussian ex-
ponent in Eq. �82�. These corrections can also be estimated
in terms of the time �, after performing both integrations
in Eq. �82�. They are of the order of �R2� /R1�2

= ��� /����2 /2���2�2 and can become important only for
very large values of � because the estimate includes, in ad-
dition to the small parameter �2 /2�, Eq. �46�, also a factor
� /� that is typically small.
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Equation �82� was derived for exact resonance, �=0. For
��0, the leading term of the expansion of F��� in 1 /R1
�1 acquires a factor exp�−�2R2�cos�2�R2��. After perform-
ing the Gaussian integration over � in the modified Eq. �82�,
the leading term of the expansion in �2�1 acquires a factor
cos�2�� /cos ��. After changing the variable from � to u
according to Eq. �83�, a factor cos�2��u�1−R2� / �u−1���
should be incorporated into the integrand of Eq. �84�. Finally,
one arrives at a generalized Eq. �85�

W1��� � −
R�� exp�− �2�1 − R2��

2�1 − R2
�e−�2

. �89�

Remarkably, for R�1 the suppression of EDSR due to the
factor e−�2

is much stronger than in Eq. �69� where the sup-
pression factor e−�2R2

. However, for R=1 the suppression
disappears at all. This is another manifestation of the special
EDSR regime near the R=1 point where the driving force
coincides with the characteristic spectrum width.

One more difference between the off-resonance regime,
��0, and the on-resonance regime, �=0, is in the structure
of the 1 /R1 expansion series. The expansion coefficient
R2� /R1 is the same in both cases, but for ��0 the series
includes all powers of R2� /R1, odd and even, while in the
resonance regime odd terms vanish. In all cases the charac-
teristic time of EDSR, when W��� reaches its flat maximum,
is ��1 or t�� /�.

VI. CONCLUSIONS

For an electron in a quantum dot, coupled to a nuclear-
spin reservoir by the hyperfine interaction, there exist at least
three basic mechanisms of EDSR. They differ in the way the
electron spin � is coupled to ac electric field E�t�. The first
one is traditional SO coupling of � to electron momentum k.
For the second one, � is coupled to the electron coordinate r
through the Zeeman term in an inhomogeneous macroscopic
field B�r�. For these two mechanisms, the effect of hyperfine
coupling is reduced to detuning EDSR due to random fluc-
tuations of the Overhauser field. For the third mechanism,
such fluctuations play a more fundamental role: their trans-
verse part, being spatially inhomogeneous, maintains cou-
pling of � to E�t� through the oscillations of an electrically
defined quantum dot driven by the field E�t�. For this mecha-
nism, the Overhauser field both drives EDSR and detunes it.

These three EDSR’s differ in their dependence on the field
B, especially in the low-B region, and on the duration t of the
electric field pulse. In the paper, a theory of these three types
of EDSR is developed from a unified standpoint for a regime
corresponding to recent experiments,7–9 where the signal was
averaged over a long train of pulses, and therefore, over ran-
dom fluctuations of Overhauser field.

The main challenges confronting developing a consistent
theory of EDSR in such a system were discussed in Sec. I.
They include �i� deriving a mean field theory, �ii� establish-
ing the region of its applicability and investigating analytical
properties of its solutions, and �iii� developing a procedure
for going beyond the mean field and estimating the magni-
tude and analytical properties of the first corrections.

The approach developed in this paper is based on the
following main steps. First, because the expansion of
sin�Ht /�� /H in power series includes only even powers of
H, Eq. �33�, the Golden Rule formula for spin-flip probabil-
ity W�t� can be expressed in terms of polynomials in com-
ponents of nuclear angular momenta I j. Second, retaining
only pair correlators �the usual assumption of mean field
theory�, the contributions of the longitudinal and transverse
magnetization can be decoupled, and statistical weights of
different contributions can be expressed in terms of � func-
tions of half-integer and integer arguments for longitudinal
and transverse magnetizations, respectively. Third, employ-
ing integral representations for these � functions, one arrives
at Eq. �51� describing one-dimensional averaging over lon-
gitudinal fluctuations and two-dimensional averaging over
transverse ones. Fourth, this procedure allows accounting for
the higher correlators of nuclear spins in a regular way, as
demonstrated in Appendix B.

The probability W�t� can be split into its saturation value
W� and time-dependent part W1�t�, W�t�=W�−W1�t�. Re-
garding their large-t asymptotics, the spin-orbit and inhomo-
geneous Zeeman-coupling mediated EDSR show close simi-
larity, and W1�t� reduces to onefold integrals �Eqs.
�64�–�66��. As is well known, the large argument asymptotics
of Fourier integrals are controlled by singularities of their
integrands. Therefore, despite the complicated form of the
integrands of Eqs. �64�–�66�, they can be simplified near
their only singular point s=1 and reduced to Fresnel inte-
grals. Finally, the leading term of the large-t expansion of
W1�t� shows harmonic oscillations slowly decaying as t−1/2,
in agreement with Ref. 32. But in other aspects these two
mechanisms are not identical, and the difference between
them manifests itself most strongly in the B→0 limit, where
the requirements imposed by the Kramers theorem annihilate
the first mechanism while the intensity of the second remains
finite.

Investigating analytical properties of the hyperfine-
mediated EDSR is a more demanding problem because it is
controlled by the twofold integral of Eq. �76� that, after some
simplifications �and for �s=0�, reduces to W1�t� of Eq. �82�.
The remarkable property of the internal integral in Eq. �82� is
the analytical behavior of its integrand in the whole interval
�−� ,��. As a result, the double integral has a Gaussian type
large-t asymptotic �for details see Sec. V A�. Interestingly,
for all parameter values the probability W�t� approaches its
asymptotic value from above. This analytical result is in ex-
cellent agreement with the numerical observation of Ref. 8
that W�t� is nearly monotonic with a weak overshoot of only
about 10–15%. This smooth asymptotic differs critically
from the oscillatory asymptotics typical of two previous
EDSR mechanisms, and the overshoot can be considered as a
remnant of Rabi oscillations that are washed out by averag-
ing over the random transverse component of Overhauser
field. In the low-B domain, W�t� retains a finite value be-
cause the t-inversion symmetry is violated by the fluctuations
of Overhauser field, in agreement with experimental data.8

The Gaussian type large-t asymptotic is unique for the
mean field theory, and accounting for the first four-spin cor-
relator correction results in developing a power-law tail. De-
spite the fact that formally four-spin corrections are of the
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order of 1 /N, this tail should become essential at rather mod-
erate times t��ln N, N being the number of nuclei in the dot.
Early switching from the Gaussian to a power-law decay
should result in flattening the overshoot, making it more dif-
ficult to observe �for a more detailed discussion see Appen-
dix B�.

Regarding the effect of nuclear-spin-spin coupling on
EDSR, two issues are of importance. First, this coupling
shows no resonant enhancement under the EDSR conditions,
as proved in Appendix A. Second, whenever the condition of
sharp resonance, � /��s�1, is fulfilled, the parameter � de-
fining the effect of nuclear-spin dynamics on EDSR appears
in equations mostly through the ratio �2 /2�=� /��s �cf. Eq.
�45��. This is because in Eq. �51� the value of u2 /2��2 /2
competes with w�� �cf. Eqs. �40� and �44��. We emphasize
that �2 never competes with the Rabi term f that can be
small compared with �. As a result, hyperfine-mediated
nuclear-spin dynamics has no effect on EDSR as long as the
criterion �Eq. �46�� is fulfilled. Explicit form of this criterion
is

�2

2�
=��An0�2I�I + 1�

8N��0��s
� 1, N = �r0

2dn0. �90�

For GaAs quantum dots with An0�0.1 meV, ��0
�0.1 meV, d�5 nm, and B�100 G, this ratio is small,
�2 /2��10−2, and criterion �90� is fulfilled.

The main restriction of the model employed in this paper
is that it includes only “passive” processes in the nuclear
subsystem such as spin relaxation, and does not include
mechanisms that can result in pumping nuclear polarization
by electron dynamics. Including such “active” processes and
related instabilities in the coupled electron-nuclear system
into the formalism developed above is the major challenge.
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APPENDIX A: DYNAMIC NUCLEAR-SPIN-SPIN
COUPLING

Equation �20� was derived for a static Hamiltonian HZ
+Hhf

�. For exploring the role of driving force on spin-spin
coupling, one can use a model Hamiltonian

H = −
1

2
��s
z +

1

2
���s

2 �
j

aj�Ij
+
− + Ij

−
+�

+
1

2
f�
+ei�t + 
−e−i�t� . �A1�

Two first terms are identical to HZ+Hhf
�, with the second term

rewritten in terms of the coefficients aj of Eq. �18�. Last term
describes the driving force in the rotating wave approxima-
tion, with f defined as f = f� of Eq. �25�. The corresponding
rotating frame Hamiltonian is

Ĥ = Ĥ0 + h�t�, Ĥ0 =
1

2
�s
z + f
x,

h�t� =���s

8 �
j

aj�Ij
+
−ei�t + Ij

−
+e−i�t� . �A2�

For finding a dynamic analog of Eq. �20�, the effect of h�t�
on slow nuclear dynamics should be calculated in the
second-order perturbation theory. To this end, by rotation in
the spin space


x =

1 − #
3

�1 + #2
, 
y = 
2, 
z =


3 + #
1

�1 + #2
, �A3�

with #=�s /2f , the Hamiltonian Ĥ0 simplifies as

Ĥ0 = f�
1, f� = f�1 + #2, �A4�

and h�t� can be transformed into the interaction representa-

tion h̃�t�=exp�iĤ0t /��h�t�exp�−iĤ0t /�� by using


1�t� = 
1, 
2�t� = 
2 − 
3 sin�2f�t� ,


3�t� = 
3 + 
2 sin�2f�t�; �A5�

here and below, f� is in frequency units. Then, calculating
the second-order correction through a t-ordered product

�− i�2

2!
�

0

t �
0

t

T�h̃�t1�h̃�t2��dt1dt2, �A6�

eliminating all fast-oscillating terms proportional to e�i�t,
and exponentiating the result, one finds a hyperfine correc-
tion to the phase of the electron-spin wave function. Repre-
senting the phase factor as exp�−iHss�t�t /�� allows finding
effective spin-spin coupling Hss�t�.

Exact expression for Hss�t� is rather bulky, but in the large
� limit it essentially simplifies

Hss�t� = −
1

2

�s/�
�1 + #2�

mn

amanIm
+ In

−

� �#

2
�3 −

sin�4f�t�
4f�t



1 +
sin2�f�t�

f�t

2 + 
3� .

�A7�

Near the spin resonance ���s, and the factor �s /��1 can
be omitted. Hss�t� oscillates with the Rabi frequency f� and
saturates for f�t→�. Expressing �
1 ,
3 ,
3� through
�
x ,
y ,
z� by using Eq. �A3�, one can check that at short
times, f�t�1, Hss�t� coincides with Hss of Eq. �20�. In the
opposite limit, for #�1 and f�t�1, Hss�t��3Hss /2.

Therefore, Hss�t� shows no resonant enhancement at �
→�s and has a magnitude comparable to Hss of Eq. �20� and
the same sign. In physical terms, this result suggests that the
hyperfine dynamics near the resonance, �s�0, is strong
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enough to smear the rotating frame singularity and reduce its
effect to moderate changes in the nuclear-spin relaxation rate
that acquires oscillatory behavior. Regarding the significance
of this conclusion, see discussion at the end of Sec. II C.

APPENDIX B: EFFECT OF HIGHER CORRELATORS

Equation �51� was derived including only pair correlators
of nuclear spins 	Im

�In
�
= 	I�I�
�mn �Sec. III A�. In this Appen-

dix, the effect of higher correlators on EDSR intensity will
be estimated as applied to the operators f�

hf of Eq. �28�. To
simplify bulky calculations, terms gz and g+g− in the Hamil-
tonian of Eq. �25� will be omitted.

In the pair-correlator approximation, a correlator FM
= 	�f+f−�M
 including M pairs of operators f�, was evaluated
as

FM = M ! 	I+I−
M��
m

bm
2 
M

. �B1�

This estimate came from counting the number of possible
Im

+ In
− pairings without any constraints imposed on m and n.

However, such a count overestimates the contribution of pair
correlators that should be found from

FM
�0� = M ! 	I−I+
M �

m1�m2�. . .�mM

bm1

2 bm2

2 . . . bmM

2 . �B2�

Indeed, each sharing of indices such as m1=m2 results in
higher correlators such as 	�I+I−�2
. Therefore, one needs to
evaluate the effect of this constraint on W�t�. For this evalu-
ation, it is enough to keep in Eq. �B2� only the principle
sequence of corrections that includes terms with a number of
pairs of shared indices, such as m1=m2, but does not include
triple shared indices, such as m1=m2=m3, and terms with a
larger number of shared indices. Their contribution is of
higher order in 1 /N, where N=�r0

2dn0 is the effective num-
ber of nuclei in the dot.

Each term of the correlator FM
�0� involving s pairs of

shared indices mj makes a contribution

�− �sFM
M!

s ! 2s�M − 2s�!��m bm
4 
s/��

m

bm
2 
2s

. �B3�

Here 0"s"smax, with smax=M /2 when M is even and
smax= �M −1� /2 when M is odd. The factor with factorials
equals the multiplicity of independent selections of s pairs of
shared indices mj. The origin of the sign factor �−�s becomes
clear when one eliminates, in succession, first a single pair of
shared indices, then the second, etc. Last factor can be cal-
culated using definition �28� of bm with �0�r ,y� of Sec. III B

�
m

bm
4 /��

m

bm
2 
2

= 35/24N . �B4�

Therefore, in the principle sequence approximation, FM
�0�

equals to

FM
�0� � FM �

s=0

smax

�− �s M!

s ! �M − 2s�!� 35

48N

s

. �B5�

Estimating a few first terms of the series shows that the ex-
pansion parameter is M2 /N. It corresponds to a typical fluc-

tuation M ��N in the nuclear reservoir. With M �1 and s
�M, the ratio M ! / �M −2s� ! �M2s, and Eq. �B5� is an ex-
ponential series. It converges fast, and one can extend sum-
mation to infinity. Then

FM
�0� � FM exp�− 35M2/48N� . �B6�

Therefore, constraint �B2� results in an exponential factor of
Eq. �B6�.

For calculating the effect of constraint �B2� on W���, Eqs.
�B1� and �B6� should be plugged into Eq. �34� �with gz ,g�

=0�, and M! should be eliminated by applying averaging
over the Gaussian distribution of Eq. �49�. Then one arrives
at

W�0��t� � � d2v���v� �
k,k�=0

�
�− �k+k��t/��2�k+k�+1�

�2k + 1� ! �2k� + 1�!

� �
$=0

k+k� �k + k��!
$ ! �k + k� − $�!��s

2

2$

� �v2M exp�−
35M2

48N

�

M=k+k�−$+1
, �B7�

where the superscript zero indicates that W�0� includes only
pair correlators. With the last exponential factor omitted, the
sum over $ is a binomial v2���s /2�2+v2�k+k�, and Eq. �B7�
reduces to a simplified version of Eq. �51� with only a single
integration.

In resonance, �s=0, the only characteristic time scale is
� /�. For �= t� /��1, sums over k converge fast, at k ,k�
�1. Therefore, M �1 and the effect of the exponential factor
exp�−35M2 /48N� is small, only about 1 /N. For large detun-
ing, �s��, a short time scale � /�s develops. However, it
was shown in Sec. V A that EDSR frequency fluctuations
� /� of a scale �%�s /2 �that were omitted when deriving
Eq. �B7�� reestablish the � /� scale, hence, the 1 /N estimate
should remain valid for the hyperfine-mediated EDSR.

The difference between FM
�0� and FM reflects the reduction

in the contribution of two-spin correlators, for given M, be-
cause of constraint �B2�. Next step is estimating the direct
contribution of higher correlators, and this will be done for
�s=0. The contribution of a single four-spin correlator
	�I+I−�2
 to W�t� equals

W�0��t� � �
k,k�=0

�
�− �k+k��t/��2�k+k�+1�

�2k + 1� ! �2k� + 1�!

�
7

4N
�FM

M�M − 1�
4

�
M=k+k�+1

. �B8�

The coefficient is a product of the ratio 	�I+I−�2
 / 	I+I−
2

=6 /5 evaluated for classical spins and the ratio of b sums of
Eq. �B4�. The contribution of pair correlators was estimated
in the principle sequence approximation, similarly to Eq.
�B3�. The multiplier M�M −1� /4 reflects change in the com-
binatorial factor due to adding a single four-spin correlator
and reducing the number of two-spin correlators by two �to-
tal number of spin operators kept fixed�. Exponential factor
about exp�−36M2 /48N� is omitted.
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The factorial M! in FM can be eliminated by introducing
a Gaussian variable v and performing Gaussian integration
according to Eq. �49�. Afterwards, the factor M�M −1� can
be eliminated in the integrand by substituting it by deriva-
tives such as MvM =vd�vM� /dv. This transformation allows
performing summations over k and k�, and one arrives at

W�1��t� �
7

8N�2�
0

�

dvv3e−v2/�2

� ��v2 d

d�v2�

2

+ v2 d

d�v2�� sin2�vt/��
v2 . �B9�

The integral can be simplified by performing by parts. Fi-
nally, in terms of �= t� /�,

W�1���� =
7

8N
�

0

�

duu�2 − 4u2 + u4�e−u2
sin2 u� .

�B10�

Its asymptotic behavior for ��1

W�1���� � 7/�16N�2�; �B11�

the power-law decay originates due to finite slope of the
integrand at u=0. Therefore, at the time span of ��1, first
correction to mean field behavior of W�t� from the four-spin
correlator is of the order of 1 /N, i.e., of the same order as
correction �B7� from the reduction in the number of pair

correlators. A new feature is the time dependence of W�1����.
While the Gaussian asymptotics of Eqs. �85�–�88� are a dis-
tinctive property of the mean field theory of hyperfine-
mediated EDSR, Eq. �B11� indicates a much slower decay of
the corrections to this theory. The power-law asymptotic de-
serves a more detailed study, however, a cancellation of
power-law terms and return to the exponential asymptotic
behavior seems improbable. Remarkably, the power-law tail
of Eq. �B11� suggests deviation from the mean field behavior
at rather modest times of about ���ln N. For N=105, this �
is only about ��3. With such an early switching from the
fast � exp�−�2� decay of Eq. �85� to slow 1 /�2 decay of Eq.
�B11�, the maximum of W��� at ��1 should be smoothened.
Such a smoothening can explain the absence of a well-
expressed maximum �within the spread of experimental
points� in the 44-mT curve in Fig. 3�a� of Ref. 8.

It deserves mentioning that Eq. �B7� has implications be-
yond the simplified model of the hyperfine-mediated EDSR
for which it was derived. Spin-orbit and magnetically medi-
ated EDSRs show oscillatory behavior, Sec. IV B, and be-
cause the convergence of the series describing oscillations
slows down rather fast with the number of oscillations, this
immediately translates into an increase in the corrections
proportional to M2��k+k��2, according to Eq. �B7�. There-
fore, the magnitude of the corrections to mean field theory is
expected to increase essentially with the number of oscilla-
tions.
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